Adaboost

时间:2022-05-03
本文章向大家介绍Adaboost,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

NaiveBayesSpamFilter

利用朴素贝叶斯算法实现垃圾邮件的过滤,并结合Adaboost改进该算法。

1 Naive Bayes spam filtering

  假设邮件的内容中包含的词汇为Wi,垃圾邮件Spam,正常邮件ham。 判断一份邮件,内容包含的词汇为Wi,判断该邮件是否是垃圾邮件,即计算P(S|Wi)这个条件概率。根据Bayes’ theorem:

  Bayes’ theorem

  其中:

Pr(S|Wi) 出现词汇Wi的邮件是垃圾邮件的条件概率(即后验概率); Pr(S) 训练阶段邮件数据集中垃圾邮件的概率,或实际调查的垃圾邮件的概率(即先验概率); Pr(Wi|S) 垃圾邮件中词汇Wi出现的概率; Pr(H) 训练阶段邮件数据集中正常邮件的概率,或实际调查的正常邮件的概率; Pr(Wi|H) 正常邮件中词汇Wi出现的概率;   对于邮件中出现的所有词汇,考虑每个词汇出现事件的独立性,计算Pr(S|Wi)的联合概率Pr(S|W),W={W1,W2,…Wn}:

  Bayes’ theorem

  其中:

P 即Pr(S|W),出现词汇W={W1,W2……Wn}的邮件是垃圾邮件的条件概率; Pi 即Pr(S|Wi),出现词汇Wi的邮件是垃圾邮件的条件概率;   注: 程序中,通过计算出Pr(S|W)和Pr(H|W),比较Pr(S|W)和Pr(H|W)的大小,判断是垃圾邮件还是正常邮件。我们发现Pr(S|W)和Pr(H|W)计算的分母相同,所以我们只需要比较分子即可。

  但存在两个问题:

当词汇不存在时,即ni=0,此时Pr(S|Wi) = 0,会造成P=0,无法比较 当Pr(S|Wi)较小时,连乘操作会造成下溢出问题   解决方案:

计算P(Wi|S)和P(Wi|H)时,将所有词汇初始化出现的次数为1,并将分母初始化为2(或根据样本/实际调查结果调整分母的值)。

# 统计语料库中词汇在S和H中出现的次数
wordsInSpamNum = np.ones(numWords)
wordsInHealthNum = np.ones(numWords)
spamWordsNum = 2.0
healthWordsNum = 2.0

计算P(Wi|S)和P(Wi|H)时,对概率取对数 pWordsSpamicity = np.log(wordsInSpamNum / spamWordsNum) pWordsHealthy = np.log(wordsInHealthNum / healthWordsNum)   所以最终比较的是,P(W1|S)P(W2|S)….P(Wn|S)P(S)和P(W1|H)P(W2|H)….P(Wn|H)P(H)的大小。

ps = sum(testWordsMarkedArray  pWordsSpamicity) + np.log(pSpam)
ph = sum(testWordsMarkedArray  pWordsHealthy) + np.log(1 - pSpam)

  测试效果: 5574个样本,采用交叉验证,随机选取4574个作为训练样本,产生词汇列表(语料库),对1000个测试样本,分类的平均错误率约为:2.5%。

2 Running Adaboost on Naive Bayes

  我们在计算ps和ph联合后验概率时,可引入一个调整因子DS,其作用是调整词汇表中某一词汇的“垃圾程度”(spamicity),

ps = sum(testWordsMarkedArray * pWordsSpamicity * DS) + np.log(pSpam)

  其中DS通过Adaboost算法迭代获取最佳值。原理如下:

设定adaboost循环的次数count 交叉验证随机选择1000个样本 DS初始化为和词汇列表大小相等的全一向量 迭代循环count次: 设定最小分类错误率为inf 对于每一个样本: 在当前DS下对样本分类 如果分类出错: 计算出错的程度,即比较ps和ph的相差alpha 如果样本原本是spam,错分成ham: DS[样本包含的词汇] = np.abs(DS[样本包含的词汇] - np.exp(alpha) / DS[样本包含的词汇]) 如果样本原本是ham,错分成spam: DS[样本包含的词汇] = DS[样本包含的词汇] + np.exp(alpha) / DS[样本包含的词汇] 计算错误率 保存最小的错误率和此时的词汇列表、P(Wi|S)和P(Wi|H)、DS等信息,即保存训练好的最佳模型的信息   测试效果: 5574个样本,获取Adaboost算法训练的最佳模型信息(包括词汇列表、P(Wi|S)和P(Wi|H)、DS等),对1000个测试样本,分类的平均错误率约为:0.5%。